

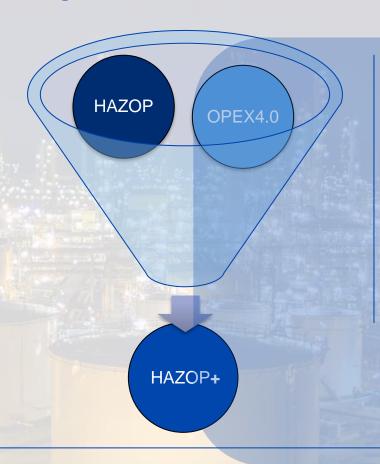
Digitization and AI approaches in HAZOP application within TÜV SÜD

HAZOP+ (TÜV SÜD Chemie Service GmbH)

My presentation today

- Interactive HAZOP (TÜV SÜD Industrie Service GmbH)
 - Strict structuring and standardization of the HAZOP process based on defined rules
 - Split a plant into defined modules
 - Manual or automized generation of HAZOP
 - i. based on modules,
 - ii. application of safety rules or
 - iii.a digital safety twin and
 - iv.supported by Al

Challenges in operating plants and advantages HAZOP+


- Increasing energy and raw material costs
 - Operational optimization => less energy per unit of production => excellent basis for the implementation of energy efficiency projects (DIN EN ISO 50001)
- Sustainable plant operations becomes a must within the political consensus => Impact on sustainability
 - e. g. less energy => less CO₂ per unit of production
 - Better utilization of the raw materials used = > resource conservation
- Holistic approach in the sense of HAZOP = HAZard and OPerability in contrast to the current use with a focus on HAZard, increased utilization of "real data" incl. knowledge of close to critical states instead of design data
- Reduction of the variation of operational parameters, e.g. pressure and temperature, means less "stress" for a system
- ⇒less wear / plant aging
- Seamless integration in future Big Data application and advanced process control with AI on 24/7

HAZOP + OPEX4.0* = HAZOP+

HAZOP

- Deep process analysis method of Process Safety
- Results: recognition of safety gaps and determination of corresponding risk reducing measures
- Deepest and most resource intensive analysis, through which a plant is put after its original design process during its utilization life

Cooperation partner**

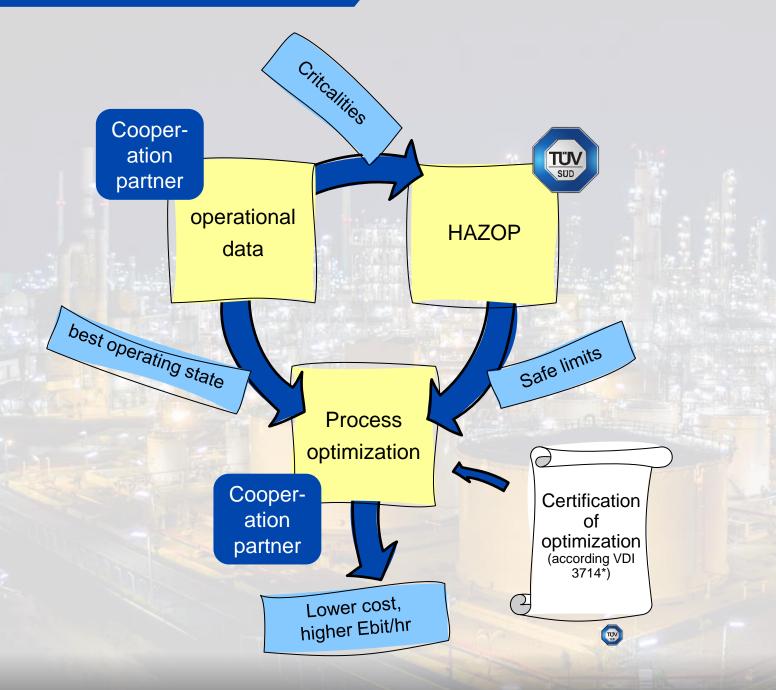
OPEX4.0

- Many companies have a systematic OPEX
 (Operational Excellence) process, which is
 used to optimize yields, utility usage, minimize
 unplanned downtime, and optimize other
 parameters with an impact on costs.
- The optimization of operating parameters is optimally based on data centered methods, and AI for the interpretation of process parameter data, such as T, P, L, F, Q.

HAZOP+

- is the combination of a HAZOP study with an OPEX4.0 project, realizing synergies between the two
- The target of HAZOP+ is a safe plant running at stable conditions with optimized economic performance

^{*}OPEX4.0 = Combination of Operational Excellence and Industry 4.0


^{**}Cooperation partner (internally= specialist department of customer, externally= partner of TÜV SÜD)

- Combination of process safety review (HAZOP) and operational optimization (OPEX 4.0)
- HAZOP study performed by experienced TUV SUD experts
 - Operating periods with upsets/problems:
 Systematic consideration during the HAZOP study
- OPEX4.0 performed by cooperation partner (internally= specialist department of customer, externally= partner of TÜV SÜD)
 - Based on best operating periods:
 Optimization of operating parameters using Machine Learning
- Certification of optimization project according VDI 3714*

*VDI3714: German engineering standard for the optimal execution of big data projects

Execution of HAZOP+ Projects

Preparation

- Needed documents
- Updates needed?
- Data (from DCS, Lab..)
- P&ID, Control scheme, plot plan, equipment data, process data, substance data,....
- Plant upsets, repairs, incidents, ...
- Operating parameter data from DCS, LIMS, optimally from several years
- Simulation results (if available)

Analysis

- -HAZOP study
- -Data- & AI- based analysis of operation

Implementation

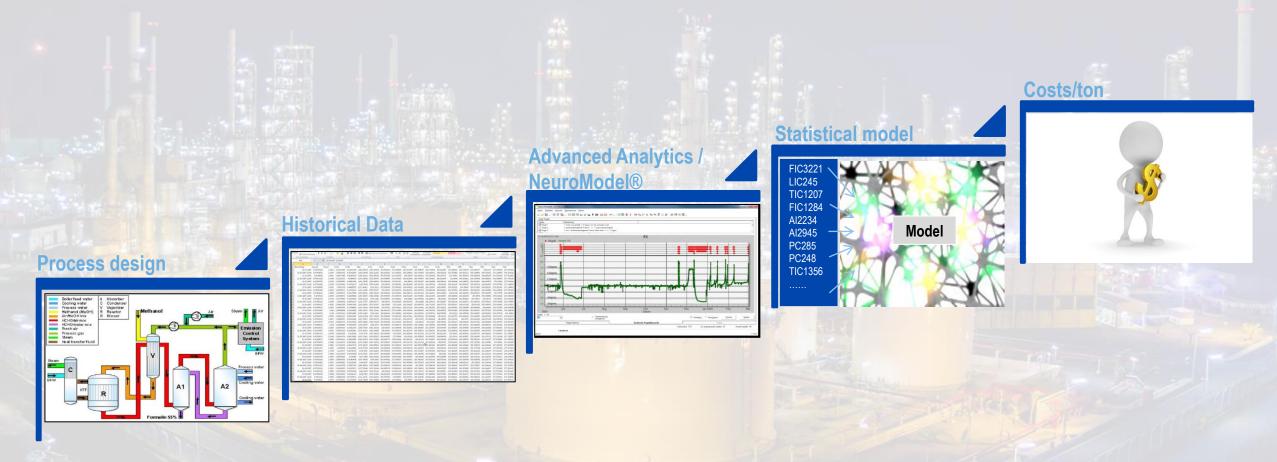
-HAZOP action items-Optimisations

Follow up, Finetuning

- HAZOP:
 - Review of all P&IDs,
 Check of all safety devices
 (SIL, PSVs,...), etc.
 - Review of critical operating periods
- OPEX4.0:
 - Analysis and formation of models
 - Determining good and bad run periods
- Synergies:
 - Limits of optimization
 - Including plant upsets and bad run periods in the HAZOP study

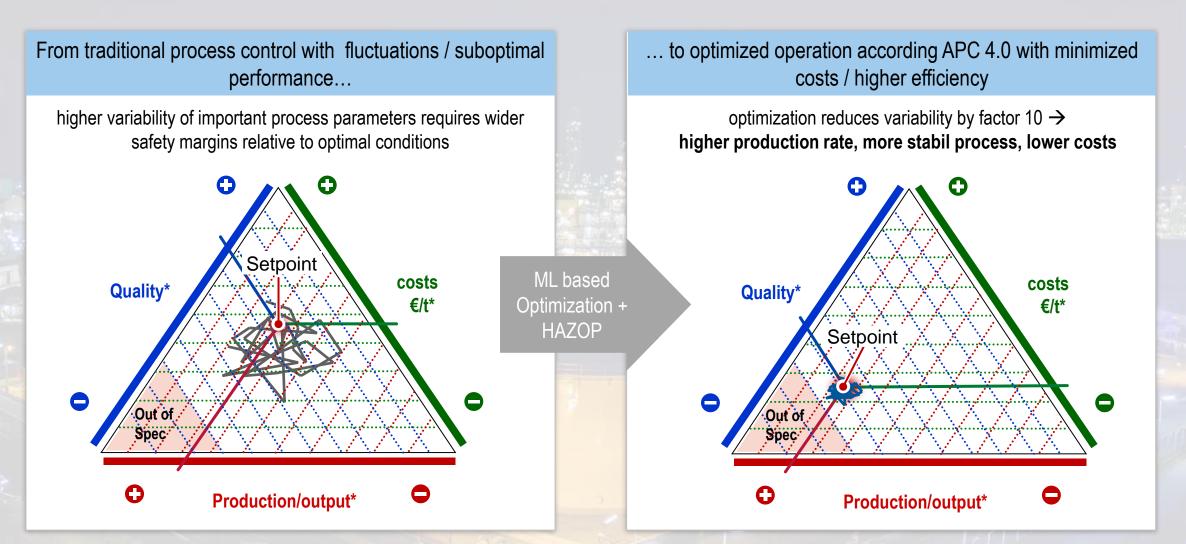
- Safety measures, resulting from HAZOP
- Optimized setpoints of relevant control loops
 - Offline, Operator input
 - Closed loop: Al feeds optimized setpoints directly to DCS
- Certification of the Optimization Project according VDI3714 through TÜV SÜD

- Follow up on HAZOP measures/action items
- Further optimization of operating parameters with statistical models of the Al



Analysis, OPEX4.0

- Optimization of operating parameters using AI / Machine Learning
- Operating data from the DCS* and LIMS* are filtered regarding relevance for the optimization
- Operating data are processed into statistical models, which identify optimal operating parameters
- models are tested and further optimized - Optimizer software uses the models to maximize target functions such as EBIT/hr
- The new setpoints are fed manually or automatically to the DCS, in order to control the the plant as close as possible at the optimal operating conditions
- The Optimization follows the steps of standard VDI3714* (Big Data Projects in Production)
- Plan for 2023: Certification through TÜV SÜD


Optimization of operating parameters using advanced machine learning

Constructing a statistical model, which connects process variables with costs/ton (or alternative focus for optimization)

Optimization of operating parameters using Machine Learning

*alternative parameters can be defined as necessary based on focus of optimization - the graphs is are qualitative and not quantitative illustration only

Summary

- Goal of HAZOP+ is a safe plant, running at stabile conditions with optimized performance due to a target function
 - Target function 'minimized costs' or 'maximized Ebit/hr' or others with regard to safety
- Synergies of HAZOP and ML/AI based operational optimization
 - Efficient preparation of data & documents (P&IDs, functional plans, operating data, etc.)
 - Strong overlap of required data & documents
 - Quality of HAZOP study improved by systematic use of the operational data from the optimization project
 - 'Bad' operating periods and plant upsets show the actual problems, which often cause safety incidents
 - More room for optimization and reduced risk of operational optimization through certification and exactly calibrated safety limits resulting from the new HAZOP study
 - Safety limits are fixed in awareness of the optimization effort, not more conservative than needed
 - Certification of optimization project according VDI3714
- Tools (online or offline) for a readiness assessments are supporting the preparation phase

TÜV SÜD AI application family

TÜV SÜD Chemie Service GmbH

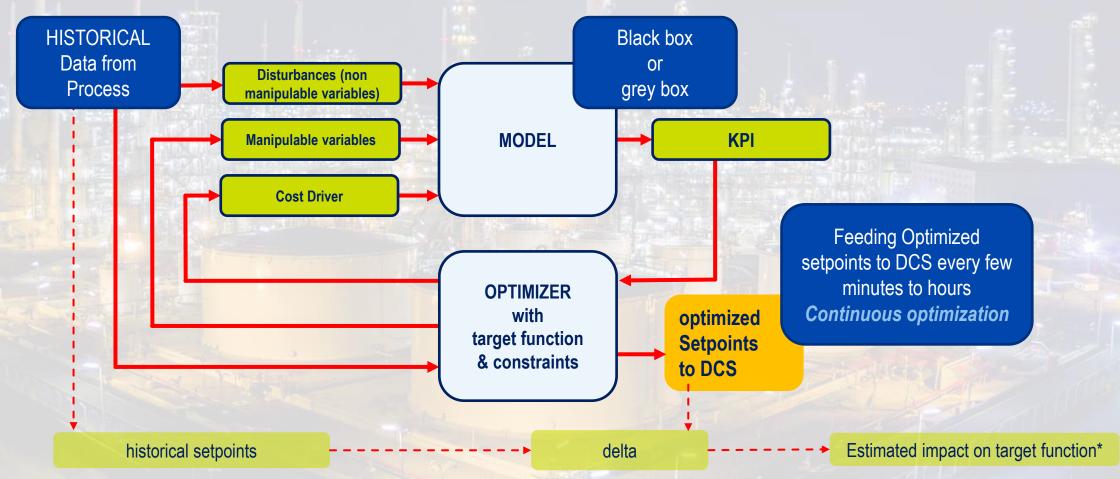
- HAZOP +
 - Synergistic combination of HAZOP and OPEX4.0
- OPEX4.0
 - Optimization of a plant's operating/process parameters by means of Al/Machine Learning
 - Target functions 'minimized costs' or 'maximized Ebit/hr' or others
 - Following the recommendations of VDI3714 (execution of big data projects in production environment)

AMAIS

- Sensor based Asset Monitoring, Al supported
- Plant integrity is monitored by permanent sensors (e.g. for corrosion, erosion, vibrations, fouling,..)
- Sensor data evaluated by AI and visualized on a Dashboard

TÜV SÜD Industrie Service GmbH

- Interactive HAZOP
 - Modular plant design
 - Manual or automized generation of HAZOP based on modules, application of safety rules or a digital safety twin



Optimization of operating parameters using advanced Machine Learning

Optimization using model and optimizer:

^{*} Target function = benefit as 'costs savings' or 'Ebit/hr increase', 'energy reduction', 'CO₂ reduction' or specific others with regard to safety

AMAIS: Innovative Product for Industry 4.0

- AMAIS Asset Health Monitoring AI supported
- Consortium:
 - TÜV SÜD
 - Partners: For AI application, MAT solutions, ProsafeX, Flexora,...
- AMAIS offered as plug & play system for the monitoring of 'asset health'
- Permanently installed sensors, e.g. for wall thickness, vibrations, fouling,... Transmit their data wireless to central data system, where they are evaluated by AI. Corrosion- erosion- trends and other critical informations are visualized on a dashboard, which issues early warnings. The AI also detects correlations between process parameters (e.g. T, P, F, L, conc.,..) and corrosion/degradation rates. For this purpose, process data from the DCS are analyzed in parallel.

