

1

Antea Group is an international engineering and consultancy firm. We combine valuable knowledge with a pragmatic approach, to come up with workable solutions. This makes us a multifaceted, independent partner for companies and government bodies

Just as we have been for over 65 years now

Shifts due to the energy transition

- · How energy is created
 - Renewable sources, less centralized
- How we transport energy
 - Power grids aren't designed for this
 - Peak generation vs dips
- Which fuels we use
 - Preferably carbon emission free

- How we store energy
 - Batteries
 - Storage of peak energy
- Where we store energy
 - Centralised in tanks / coal fields
 - Near users

Understanding today.
Improving tomorrow.

Ammonia as an Hydrogen carrier

- Renewable energy
- Electrochemical conversion
- Intermediate storage
 - Distribution (global)
 - Peak storage
 - Direct delivery to endusers

5

Use of ammonia

- Fertiliser (production)
- As a coolant
- Base chemical
- Use in renewable energy (hydrogen carrier)
- As a (marine) fuel
- As a co-fuel in powerplants

Ammonia as an Hydrogen carrier

Storage of energy (e.g. seasonal flux and/or transportation)

Fuel

- Hydrogen
 - · High pressure (700 barg), or
 - Low temperature (-253 C)
- Ammonia
 - Temperature (-33 C), or
 - Pressure (~6,5 barg)

	Ammonia	17.7	4325	
	Methanol	12.5	4600	
	Ethanol	13	6100	
	Gasoline	15.8	9700	
y density	Hydrogen	100	1305	

H₂ content (wt%)

- High volumetric energy density
- Experience with long storage and transportation

Understanding today.
Improving tomorrow.

Volumetric energy density (Wh/L)

7

Ammonia as an Hydrogen carrier

- Drawbacks are apparent
 - Ammonia is not without safety risks
 - Toxicity and aqua toxic
 - Public perception is key
 - · Energy loss when creating ammonia
 - Estimated at 20% energy loss
 - Emission of ammonia during transport
 - · Dependant on design conditions

Ammonia risks

- Inhalation
 - · Ammonia is irritating and corrosive. Exposure to high concentrations of ammonia in air causes immediate burning of the nose, throat and respiratory tract.
- Skin/Eye contact:
 - Corrosive gas which can cause severe irritation and burn marks. Which can lead to severe injury.
- Aquatoxic
 - Creates a toxic buildup in aquatic organisms.
- Vapour is flammable
 - When exposed to a liquid pool fire: risk of BLEVE

Improving tomorrow.

9

Ammonia characteristics

Property	Hydrogen	Ammonia	Methane	Propane
Molar mass	2.016	17	7 16	44,1g/mol
Density	70	681	L 423	600 kg/m³ (1 bar at bp)
Boilingpoint	-253	-33	-162	-42C
Flash point	<-253	11	-188	-104C
Auto ignition temperature	500-571	651	L 537	470C
LFL	4	15	5 4,4	2,4%
UFL	75	25	5 17	9,5%
Minimum ignition energy in air	0,019	680	0,29	0,25 mJ
Maximum laminar burning				
velocity	2,91	0,07	7 0,37	0,43 m/s
Caloric value	120	18,6	5 50	46,4 MJ/kg

Be aware of the typical risks

- Low storage temperature,
 - cause of brittle failure
 - Frost heave
- Creation of over- or underpressure
- Roll-over of fluids during tank filling
- Stress corrosion cracking (of metal welds)
- Corrosion under isolation
- Releases can cause toxic clouds
 - Indoor releases can easily build up to dangerous levels

Understanding today. Improving tomorrow.

11

Safety first during design

Safe by design philosofy

- Minimization
- Substitution
- Moderation
- Simplification
- Improving fault tolerances
- Limitation of dangerous effects
- Incorporation of fool-proof principles

Dealing with safety risks of NH₃

- 1. (Quantitative) risk analyses:
 - a) industrial site
 - b) transportation
 - c) reduce or mitigate the probability of an incident
- 2. To reduce the effects of an incident:
 - a) look at the environment
 - b) reduce the ammonia pool
 - c) reduce the dispersion of the ammonia cloud
- 3. Safety management:
 - a) best available techniques
 - b) control and manage safety measures

Dutch situation

- Reduction of ammonia transport
- Safety deals to move ammonia plants
- Public perception:
 - Toxic bombs
- The Dutch 'Nitrogen-crisis'
 - Oversaturation of Natura 2000 nature

Understanding today. Improving tomorrow.

15

Quantitative risk analyses

Understanding today. Improving tomorrow.

17

Quantitative risk analyses

Understanding today. Improving tomorrow.

19

Quantitative risk analyses

Understanding today. Improving tomorrow.

21

Quantitative risk analyses

Understanding today. Improving tomorrow.

23

Quantitative risk analyses

Understanding today.
Improving tomorrow.

Understanding today. Improving tomorrow.

25

Quantitative risk analyses

Understanding today.
Improving tomorrow.

Understanding today.
Improving tomorrow.

27

Quantitative risk analysis: societal risk

How to improve your image

- Show why ammonia is beneficial for society
 - Energy transition
- Be safe in what you do
 - · Control and manage safety measures
 - Minimize the risks in design
 - Testing and inspecting, and keep up a good administration
 - Safety management
 - Safety culture in your company: starts with good and responsible leadership
- Explain what you do
 - Good relationship with authorities: be sure you follow up safety legislation and permit rules
 - Good relationship with your neighbours: take complaints seriously, be open in what you do

Understanding today.
Improving tomorrow.

29

Summary

Managing Risks and image of ammonia:

- Don't be afraid, but be aware of the risks
- Implement, manage and control safety measures applicable for your specific situation
- Safety culture = good leadership = be an example for your employees
- Manage your image: don't ignore feelings of unsafety or other complaints in the surroundings of your business, but: inform, discuss, open up!

Questions

Roel Steenbergen

Senior consultant industrial safety | Antea Group

M: +31 6 51516074

roel.steenbergen@anteagroup.com

