

Thermal Process Safety Criticality Classes as a Tool for Assessment and Design

EPSC Award Lecture

Francis Stoessel

Leverkusen 6th October 2020

Thermal Process Safety Criticality Classes as a Tool for Assessment and Design

Learning from Incidents

Simplification of Thermodynamics

Systematic Risk Assessment Procedure

From Risk Assessment to Protection Strategy

From Risk Assessment to Design

Three Incidents in 1992 January, April, July

TÜV SÜD Schweiz | EPSC Award Lectiure October 2020 3

Thermal Process Safety Knowledge (Lessons Learned)

- Knowledge available in Safety Laboratories
 - Core competence

Must also be available in Operation

- Process developement
 - Focus on chemistry, yield
- Production plants
 - Focus on quality, delivery, plant management

Thermal Process Safety

At the intercept of three professions

- Thermodynamics
 - Physical chemistry
 - Kinetics
- Reaction Engineering
 - Chemical reaction engineering
 - Process technology
- Process Engineering
 - Automation and process control
 - Safety systems

Knowledge transmission

- Common and simple language
- Complex concepts must be made understandable
 - Requires simplification
 - Without loosing the scientific roots
- Training program
 - Production
 - Process development
- Tools
 - TST: Thermal Safety Tutorial
 - TSA: Thermal Safety Assessment

Thermal Process Safety Criticality Classes as a Tool for Assessment and Design

Learning from incidents

Simplification of thermodynamics

Systematic Assessment procedure

From Risk Assessment to Protection Strategy

From Risk Assessment to Design

Simplification is required

Typical sentence in a safety report before 1992

A decomposition reaction with a specific energy of 500 J/g releases 10 W/kg at a temperature of 150 °C.

Assuming a process temperature of 150 °C: Is the process critical or not?

Cooling Failure Scenario

Runaway profile T = f(T)

Thermal Safety Characteristics

- T_D Process temperature
- MTSR Maximum temperature of the synthesis reaction
- T_f Final temperaure
- tmr_{ad} time to maximum rate under adiabatic conditions

Risk Assessment Criteria

- Severity on temperature scale
 - The higher the temperature the higher the pressure the higher the damage

- Probability on time scale
 - The shorter the time available to recover a safe situation the higher the probability of runaway

	High	$\Delta T_{ad} > 200 K$			
Severity	Medium	$50K < \Delta T_{ad} < 200K$			
	Low	$\Delta T_{ad} < 50 K$ and no pressure			
			tmr _{ad} ≥ 24h	8h <tmr<sub>ad<24</tmr<sub>	tmr _{ad} ≤8h
			Low	Medium	High
		Probability			

TÜV SÜD Schweiz | EPSC Award Lectiure

From tmr_{ad} to T_{D24}

- tmr_{ad} is a time
- It is an exponential function of temperature

$$tmr_{ad}\left(T_{0}\right) = \frac{c_{p}RT_{0}^{2}}{q_{ref}\exp\left[\frac{-E}{R}\left(\frac{1}{T_{0}} - \frac{1}{T_{ref}}\right)\right]E}$$

• T_{D24} The temperature at which the tmr_{ad} is 24 h.

13

Criticality Classes

- Process temperature
- MTSR Maximum temperature of synthesis reaction
- T_{D24} Maximum temperature for thermal stability
- technical reasons

MTT Maximum temperature for

○ T_f Final temperature

Simplification

Simple language built on scientific roots

- A decomposition reaction with a specific energy of 500 J/g releases 10 W/kg at a temperature of 150°C.
- A decomposition, able to raise the temperature by 250 °C, leads to a severe thermal explosion within less than one hour, starting from 150 °C.

Determine **Energy Potential** medium or high Severity ? Assess Probability Assess control of reaction Process presents of Triggering no thermal risk Accumulation (MTSR) Decomposition (tmr_{ad} Criticality 3-4 Process is not critical Process is critical Process is critical No measure required Redesign process or Technical measures required **Emergency measures**

Thermal Process Safety Criticality Classes as a Tool for Assessment and Design

Learning from Incidents

Simplification of Thermodynamics

Systematic Assessment Procedure

From Risk Assessment to Protection Strategy

From Risk Assessment to Design

TÜV SÜD Schweiz | EPSC Award Lectiure October 2020 15

Assessment Procedure

- Determine Energy potential
- Determine the 4 characteristic temperatures

- 3. Criticality class
- 4. Assessment
- 5. Directions for design of measures

Example Condensation Reaction

Process Description

Solvent: Acetone

Charge: 2500 kg

Reaction temperature: 40 °C.

Semi-batch with stoichiometric addition within 2 hours

Maximum accumulation is 30%.

Reaction:	$Q_r' = 230 \mathrm{kg kg^{-1}}$	$c_p' = 1.7 \text{ kJ kg}^{-1} \text{ K}^{-1}$
Decomposition:	$Q'_d = 150 \mathrm{kJ kg^{-1}}$	T _{D24} = 130 °C
Physical data:	Acetone	<i>T_b</i> = 56 °C

Assessment of the Energy Potential

Potential

Reaction

$$\Delta T_{ad} = \frac{Q'_{rx}}{c'_p} = 135K$$

Decomposition

$$\Delta T_{ad} = \frac{Q_d'}{c_p'} = 89K$$

Overall

$$\Delta T_{ad} = 224K : HIGH$$

Final temperature

$$T_f = 264 \,{}^{\circ}C$$

TÜV SÜD Schweiz | EPSC Award Lectiure

Example Condensation Reaction

Process Description

Solvent: Acetone

Charge: 2500 kg

Reaction temperature: 40 °C.

Semi-batch with stoichiometric addition within 2 hours

Maximum accumulation is 30%.

Reaction:	$Q_r' = 230 \mathrm{kg kg^{-1}}$	$c_p' = 1.7 \text{ kJ kg}^{-1} \text{ K}^{-1}$
Decomposition:	$Q'_d = 150 \mathrm{kJ kg^{-1}}$	T _{D24} = 130 °C
Physical data:	Acetone	<i>T_b</i> = 56 °C

Criticality Class

■ T_D 40 °C

MTSR 81 °C

■ T_{D24} 130 °C

MTT 56 °C

Criticality class 3

MTSR Determination

$$T_p + X_{ac} \cdot \Delta T_{ad} = 81^{\circ}C$$

TÜV SÜD Schweiz | EPSC Award Lectiure

Example Condensation Reaction

Process Description

Solvent: Acetone

Charge: 2500 kg

Reaction temperature: 40 °C.

Semi-batch with stoichiometric addition in 2 hours

Maximum accumulation is 30% (at end of addition).

- Heat release rate at end of addition: 20 W/kg
- Condenser power 250 kW
- Vapor tube DN250
- Physical data of Acetone

Mw	58 g/mol			
Tb	56 °C			
$\Delta_{\rm v} {\sf H}$	523 kJ/kg			
LEL	1.6 % v/v			

Vapor Release and Thermal Behavior at MTT

Vapor released

$$m_{v} = \frac{\left(MTSR - MTT\right) \cdot c_{p}' \cdot m_{r}}{\Delta H_{v}'} = 203kg_{vap}$$

Flammable cloud

$$V_{ex} = \frac{m_v}{\rho_v \cdot LEL} = 5885 m^3$$

• Power at MTT $q'_{(MTT)} = q'_{rx} \cdot \exp\left[\frac{E}{R}\left(\frac{1}{T_p} - \frac{1}{MTT}\right)\right] \cdot \frac{MTSR - MTT}{MTSR - T_p}$

$$q_{(MTT)} = 200 \ kW$$

Vapor velocity

$$u = \frac{q}{\Delta_{o}H} \cdot \frac{4}{\pi d^2} = 3.7 \ m/s$$

Thermal Process Safety Criticality Classes as a Tool for Assessment and Design

Learning from Incidents

Simplification of Thermodynamics

Systematic Risk Assessment Procedure

From Risk Assessment to Protection Strategy

From Risk Assessment to Design

Example ERS Sizing

- Semi-batch reaction at 30 °C
- Problem:
 - What happens in case of feed failure: if feed is added in one shot?
 - Is pressure relief sizing sufficient

$$P_{set} = 4 bar g ?$$

Calvet Calorimeter

Setaram C80

- Differential calorimeter
- Typical Sample mass 0.1 to 1 g
- T: 30 300 °C
- P: 0 200 bar
- With Safety cell

Experiment 1: Simulation of the Failure Scenario

- Isothermal test at 30 °C
- then heating to 300 °C
- ightharpoonup Reaction $\Delta T_{ad} = 170 \text{ K}$
- ➤ MTSR = 200 °C
- ➤ MTT = 125 °C
- $T_{D24} = 90 \, ^{\circ}C$
- $T_f = 626 \, ^{\circ}\text{C}$
- → q reaction with exponential decay
- ➤ Pressure with «explosive» increase

Assessment of Criticality and Protection Strategy

- MTSR = 200°C
- MTT = 125°C
- $T_{D24} = 90^{\circ}C$
- $T_p = 30 \, ^{\circ}C$

Criticality Class 5 requires

Reworking of the process

or

Emergency measures

Recommendations

- Avoid triggering the decomposition
- Secure addition: limitation of flow rate
- Pressure relief must take place during synthesis reaction

25

Experiment 2: Behavior at MTT

- Reaction at 125 °C (MTT)
- Thermal stability up to 300 °C
- > Experimental decay confirmed
- ➤ Gas production 50 l/kg

ERS Design Data from Calvet Calorimeter

- Kinetic evaluation as 1st order
- Interpolation 30 125 °C
- Extrapolation to 137°C (MAWP)
- Use of vapour pressure data

Kinetics
First Order reaction
-ln(1-X) linear function of time
Activation energy from 2 temperatures

- Recommendations
 - Secure feed (interlock with T, orifice plate or C_{vs} Valve)
 - Choose set pressure as low as possible

Case	1	2	
Device	SV	SV	
P _{set} [bar g]	0.5	4.0	
T _{set} [°C]	79	125	
q [W/kg]	240	450	
d [mm]	32 / 60	49 / 92	

Thermal Process Safety Criticality Classes as a Tool for Assessment and Design

Learning from Incidents

Simplification of Thermodynamics

Systematic Risk Assessment Procedure

From Risk Assessment to Protection Strategy

From Risk Assessment to Design

Reliability of Protection Against Runaway

Based on Standard IEC 61511

Process Hazard Analysis

- Description of the scenario
- List of protection measures

alone gives no guarantee the required safety level is achieved

• Reliability analysis is required.

Required Risk Reduction

- Risk Matrix 6 x 4
- Risk reduction factors

Accepted Risk no Measure Required

ALARP: As low as Reasonably Practicable

Unaccepted Risk Measure Required

Unaccepted Risk PCS measures insufficient

	А	f > 1/10 a	100	1000	10'000	100'000	
	В	f ≤ 1/10 a	10	100	1000	10'000	
Frequency	С	f ≤ 1/100 a		10	100	1000	
Frequ	D	f ≤ 1/1000 a			10	100	
	Ε	f ≤ 1/10'000 a				10	
	F	f ≤ 1/100'000 a					
			1	2	3	4	
			Severity				

Structure of a Scenario (after LOPA)

- Independent events
- Only logical AND gates

TÜV SÜD Schweiz | EPSC Award Lectiure

Example Structure of a Runaway Scenario

			Ris	k 1		Ris	k 2
Id. Cooling failure	Causes Failure of cold water supply fo= 1/1 y	Hazard Consequences If failure during last 2 hours of feed (P=20%) then Accumulation leads to high temperature and pressure above MAWP, LOC flammable vapor escaping, Explosion if Ignited (P=1/100), Operators present (P=1/1), Causing 1-2 fatalities	S 4	С	Risk reducing measures T/O: Emergency cooling using city water triggered by operator following TAH (1/1) T: Interlock: TSHH stops feed (1/10) T: PSV (1/100)	S 4	E

■ Initiating event → Enabling event → Conditional modifiers → Consequences

TÜV SÜD Schweiz | EPSC Award Lectiure

5

Emergency Cooling

Required Power from Calorimetry

- Must be independent of utilities
- Limitation in case of solidification
- Agitation is critical

TÜV SÜD Schweiz | EPSC Award Lectiure

Feed in Semi-Batch Reactors

- The feed determines
 - the accumulation
 - the MTSR

Controlling the feed

- Amount of feed
 - Portions
 - Redundant feed valves
- Feed rate
 - Orifice
 - Volumetric pump
- Stopping the feed
 - Interlock with Temperature + / -
 - Interlock with Stirrer

Conclusion

Criticality Classes for Runaway Hazards

- Simple language
- Scientific roots
- Strengthens the Systematics of the Risk Assessment
- Guide for Definition of a Protection Strategy
- Delivers the Thermal Data for the Design

TÜV SÜD Schweiz | EPSC Award Lectiure

Acknowledgements

Industry

- Ciba
- Novartis
- Swissi
- Tüv Süd
- Colleagues and Management

University

- Ecole Nationale Supérieure de Chimie de Mulhouse (ENSCMu)
- Swiss Federal Institute of Technology (EPFL)
- PhD students

EPSC

- Board for the award nomination
- J. Buhn for his hospitality
- M. Hahn for her support and care

❖ My wife for her patience

TÜV SÜD Process Safety

Mattenstrasse, 24a CH-4002 Basel

Phone: +41 (0)58 517 80 20 Fax: +41 (0)58 517 80 21

Email: info.bs@tuev-sued.ch

Process Safety